ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Επίλυση εξισώσεων - ανισώσεων - συστημάτων
Εξισώσεις
Clear["Global`*"]
eq = x^2 - 6 x + 7 == 0
Solve[eq, x]
NSolve[eq, x]
FindRoot[eq, {x, 2}]
Reduce[eq, x]
eqTr = 4 Cos[x] == x
Solve[eqTr, x]
NSolve[eqTr, x]
FindRoot[eqTr, {x, 1}]
Reduce[eqTr, x]
Ανισώσεις
Reduce[x^2 - 9 > 0, x]
Συστήματα
Ακριβής λύση
Clear["Global`*"]
eq1 = 3 x + 5 y == 1
eq2 = x^2 - y == 2
Solve[{eq1, eq2}, {x, y}]
Clear["Global`*"]
n = 4;
eqns = Table[Sum[(i^j - j^i) x[i], {i, 1, n}] == 3*j, {j, 1, n}];
TableForm[eqns]
vars = Table[x[j], {j, 1, n}]
Solve[eqns, vars]
system = Normal[CoefficientArrays[eqns]]
b = -system[[1]];
A = system[[2]];
b // MatrixForm
A // MatrixForm
MatrixPlot[A]
f = LinearSolve[A]
f[b]
Προσεγγιστική λύση
Clear["Global`*"]
eq1 = 3 x + 5 y == 1
eq2 = x^2 - y == 2
NSolve[{eq1, eq2}, {x, y}]
Clear["Global`*"]
f1[x_, y_] := x^2 + 4*x*y + y^2;
f2[x_, y_] := 5*x^2 - 4*x*y + 2*y^2;
ContourPlot[{f1[x, y] == 4, f2[x, y] == 8}, {x, -4, 4}, {y, -4, 4}]
sol1 = FindRoot[{f1[x, y] == 4, f2[x, y] == 8}, {{x, 0}, {y, 2.2}}];
sol2 = FindRoot[{f1[x, y] == 4,
f2[x, y] == 8}, {{x, 1.6}, {y, 0.4}}];
sol3 = FindRoot[{f1[x, y] == 4, f2[x, y] == 8}, {{x, 0}, {y, -2.1}}];
sol4 = FindRoot[{f1[x, y] == 4,
f2[x, y] == 8}, {{x, -.21}, {y, -0.2}}];
solList = {sol1, sol2, sol3, sol4};
For[i = 1, i <= 4, i++,
Print[{x, y} /. solList[[i]]] ]
Static web notebook
Author kkoud
Created Fri 12 Sep 2025 18:45:46
Outline
Κώστας Κούδας | © 2025